Arithmetic properties of Delannoy numbers and Schröder numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2486 on Delannoy Numbers and Schröder Numbers

The nth Delannoy number and the nth Schröder number given by D n = n k=0 n k n + k k and S n = n k=0 n k n + k k 1 k + 1 respectively arise naturally from enumerative combinatorics. Let p be an odd prime. We mainly show that p−1 k=1 D k k 2 ≡ 2 −1 p E p−3 (mod p) and p−1 k=1 S k m k ≡ m 2 − 6m + 1 2m 1 − m 2 − 6m + 1 p (mod p), where (−) is the Legendre symbol, E 0 , E 1 , E 2 ,. .. are Euler n...

متن کامل

Arithmetic Properties of Apéry Numbers and Central Delannoy Numbers

Let p > 3 be a prime. We derive the following new congru-ences: p−1 n=0 (2n + 1)A n ≡ p (mod p 4) and p−1 n=0

متن کامل

Why Delannoy numbers?

This article is not a research paper, but a little note on the history of combinatorics: we present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. © 20...

متن کامل

Generalized Small Schröder Numbers

We study generalized small Schröder paths in the sense of arbitrary sizes of steps. A generalized small Schröder path is a generalized lattice path from (0, 0) to (2n, 0) with the step set of {(k, k), (l,−l), (2r, 0) | k, l, r ∈ P}, where P is the set of positive integers, which never goes below the x-axis, and with no horizontal steps at level 0. We find a bijection between 5-colored Dyck path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2018

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2017.07.011